
1

FACING THE FACTS
Patrick O'Beirne

Systems Modelling Ltd, Gorey, Co. Wexford, Ireland
pob <at> sysmod.com, www.sysmod.com

Abstract
This paper has two simple messages:

1. Remove overconfidence in order to make quality visible;
2. This requires earlier and more frequent review than is usually done.

'If debugging is the process of removing bugs, then programming must be the
process of putting them in' - Anon.

Initial questions (answers later)
1) Are defects good or bad?
2) If your reviewer tells that they found no defects in a spreadsheet, is that

good or bad?

Introductory definitions
To err is human; people make errors. In his book Human Error [3], James
Reason uses 'error' as a generic term that can be categorised as slips in
execution (eg typos) or mistakes in judgment (eg using the wrong word). In
programming, human error creates defects (aka faults) in the software which
can be immediately visible or latent. Depending on the conditions in
production use, some defects may give rise to possibly many incidents of
failure, and some may never be encountered. These incidents are reported by
the user as fault reports, often called bug reports.

Defect Density is a standard quality measure of the number of defects per
thousand lines of code (KLOC) or Function Points (FP) or, in the spreadsheet
domain, Unique Formulas (UF). The defect density of a product follows a
cumulative curve which rises at the start as defects are created and falls later as
they are found and removed.

Injected Defects are defects put into the product usually due to mistakes which
people make; but sometimes software is intentionally seeded with known
defects in order to measure the efficiency of the review process. The Defect
Injection Rate (DIR) is the percentage of work that is defective. You never
know how many injected defects you have in your product – you can only
estimate them from previous experience or benchmarks.

Removed Defects are defects which are identified by processes such as design
review, code inspection, execution test, or (most expensive of all) user
experience. They are also usually classified by severity in order to prioritise the

2

fixing effort and then removed by rework. The Defect Removal Efficiency
(DRE) is the percentage of defects detected by the find and fix processes.

The number of defects detected/fixed per unit of time (or effort) is useful for
estimating when a product is ready for release.

Reported Error Rates in Large Spreadsheets
Robert Lawrence [1] reported these statistics on the thirty most financially
significant projects that Mercer Finance & Risk Consulting reviewed year-
ending June 2004:

• Average 2,182 unique formulae per model
• Average 151 issues raised during the initial review
• Average six revisions to produce a model that could be signed-off
• One spreadsheet needed 17 revisions to resolve 239 issues
• Average 7% defect injection rate, 75% defect removal efficiency

Figure 1 shows that the defect rate for a model can be estimated as 62 plus 0.41
times the number of unique formulas (UF); or, 2.6 times the square root of UF.

Mercer Top 30 Projects
y = 0.041x + 61.611

R2 = 0.5072
y = 2.654x0.5227

R2 = 0.4382

0

50

100

150
200

250

300

350

400

450

0 1000 2000 3000 4000 5000 6000

No. Unique Formulas

N
o.

 Is
su

es

0

2

4

6
8

10

12

14

16

18

N
o

. R
ev

is
io

n
s

re
q

d

Figure 1: Scatterchart of issues vs no. UF for 30 models reviewed by Mercer.

7% is low by most end-user standards; according to Panko [4] and repeated by
many other studies, 20% is a more normal end-user defect rate. It would be
reasonable to infer that those developing the models had already done their
own checking and cleanup before handing these models over for external audit.
Later, we argue that defect removal can be made more efficient by reviewing
earlier in the process, rather than waiting to review the final product to find
them. Table 1 shows how many revisions one would expect for a given rate of
defect injection and removal.

3

D.I.R.%?
D.R.E%?

3% 4% 5% 7% 10% 15% 20% 30%

20% 15 17 18 20 22 25 29 37
25% 12 13 14 16 18 20 23 30
30% 12 12 13 15 16 18 20 26
35% 10 11 11 12 14 16 18 23
40% 9 9 10 11 12 14 15 20
50% 6 7 7 8 9 10 12 16
60% 7 7 7 8 9 10 11 14
80% 5 5 5 5 6 7 7 10

100% 3 3 3 4 4 5 6 8
Table 1: Estimated no. of revisions for 2000 Units of work (Unique Formulas)

For given Defect Removal Efficiency and Defect Injection Rates

Even at only 3% injection rate and 100% removal efficiency you still need
three revisions:
1 to write the initial model and inject 30 defects;
2 to remove the 30 defects by making 30 changes which causes 1 more defect;
3 to remove the final(?) defect.

Surveys of end-user development that review the products at an earlier stage
find typically 20% of defects. Informal inspection efficiency is around 50%; it
takes a formal process to reach 75%. For an average size model of 2000 UFs,
20% DIR and 50% DRE, one would expect 12 revisions to reach a sign-off
point.

We argue that the payback for this investment in early review time is justified
by the saving in project delay and expensive errors in use. So, how can people
be encouraged to review their work earlier? We believe that this can be done
by helping them to become aware of the real quality of their work.

Overconfidence
Justin Kruger and David Dunning of Cornell University reported [2] that
'People tend to hold overly favorable views of their abilities … their
incompetence robs them of the metacognitive ability to realize it.
Paradoxically, improving the skills of participants, and thus increasing their
metacognitive competence, helped them recognize the limitations of their
abilities.'
'Because people usually choose what they think is the most reasonable and
optimal option … the failure to recognize that one has performed poorly will
instead leave one to assume that one has performed well.'

4

'Sullivan, in 1953, marveled at "the failure of learning which has left their
capacity for fantastic, self-centered delusions so utterly unaffected by a life-
long history of educative events".'

Ray Panko [4] has presented analysis to Eusprig on the rates of errors.
'Consistent with human error research, which has seen similar error rates
across cognitive tasks of comparable difficulty, spreadsheet error rates are
very similar to those in traditional programming. However, while
programmers spend 25% to 60% of their development time in testing, testing
among spreadsheet developers in industry is extremely rare. '

Making work quality visible
The key, then, is to work in a way that faces the facts of defect injection, that
rewards the removal of defects rather than punishes the necessary precondition
of discovery. The management of developers is not to 'hold their feet to the
fire' but to make the facts inescapably obvious. It is easy to brush aside and
forget errors that have been fixed or can be quickly fixed. A written record
helps avoid overconfidence and provides a basis for post-hoc analysis that can
point to process improvements that can be made.
James Reason [3] advises self-knowledge as the first line of defence against
error. His research in the medical world has found that the best consultants are
those who consistently analyze their work and learn from their mistakes, rather
than the characteristic arrogant denial that 'we don't make mistakes here'.
To assist individuals to become conscious of their own quality, some minimal
schemes have been devised to collect and analyse data. One of these which can
be paper-based or supported by (surprise!) a spreadsheet is the Personal
Software Process (PSP) described below.

Early visibility
The conventional software development lifecycle (SDLC) is described in
phases of Requirements Analysis, System Design, Software Development, and
Testing. Where reviews take place during this lifecycle, project managers can
use early defect data to estimate the 'troublesomeness' of the product being
developed, and get an indication of when it is safe to release.
Given that you collect defect arrival data, and the curve has achieved its
maximum at time tm (e.g., the inflection point), you can calculate, assuming a
Rayleigh distribution [11], the likely final number of defects and when they
should be removed. The simplest initial assumption is that ~40% of the total
defects have appeared by tm.
The identification of separate activities with skills appropriate to each fits the
specialised world of the professional software developer constructing projects
for delivery to users. For end-user development, the fact that the customer is
also the developer abbreviates the early stages as the spreadsheet creator
believes that they understand their own requirements. They are often also their
own tester. However, when they are building spreadsheets for use by others,

5

they are already in a development role and the enterprise should equally
consider the value of a separate testing role.
For applications that are critical to the success of the business, it is already
recognised that there is a benefit from separating these stages and consciously
documenting requirements, designing a layout and a data flow, and an
independent review from a second pair of eyes. Panko [4] has related the types
of testing appropriate to the stage of development.
At Eusprig 2006, Kumiega and Van Vliet of the Illinois Institute of
Technology [5] described a spiral development methodology for rapid
prototyping in financial markets. By focusing on return on investment, they
increase the amount of amount of review and testing that a spreadsheet trading
model gets in line with the value at risk in using the model.

Disciplined Development
The Personal Software Process [6] of Watts Humphrey [7] is a disciplined
approach to improving one's software development process. Through a series
of cumulative exercises, developers learn:

1. Time and Defect recording
2. Software Size measurement
3. Software Size estimation
4. Statistically based estimation using Proxies
5. Time estimation and project scheduling
6. Process management
7. Design and Code reviews
8. Quality management through defect reduction
9. Design notation, techniques, verification
10. Scaling up the PSP to larger projects
11. How to develop the PSP into the future

Paradoxes of measurement
Normal Fenton [9] reported on a conversation with the Robert Grady of HP
about a system with no reported field defects. Initially, it was thought to be an
example of 'zero defects'. They later discovered that was because no one was
using it.

Capers Jones [10] pointed out in 1991 that there are two general rules for
customer-reported defects:

• The number of defects found correlates directly with the number of
users

• The number of defects found correlates inversely with the number of
defects that exist

This is because if the software has many users, it will have more execution
time, and hence, more defects will be uncovered more quickly. Conversely, if
the software is buggy, people will not use it, and fewer defects will be
uncovered!

6

Answers
1) Are defects good or bad?
 This question is using emotionally loaded words. If defects are 'bad',
then those who create them are 'bad' and those who report them are
messengers of 'bad' news. People will hide defects or disclaim them or
divert responsibility for them. Defects exist. Would you rather not know
they are there?

2) If your tester tells that they found no defects in a piece of software, is
that good or bad?

It depends on what else you know from previous experience of the
software developer's quality record, the efficiency of the tester, and any
previous history of problems with the application under test.

Conclusion
If risk to the enterprise is to be reduced, individuals need to become aware of
the reality of the quality of their work. We recommend that where there is no
independent review, individuals should adopt that role and consciously
examine their work and record issues for correction as if they were doing it for
someone else[12]. Such a record will serve as an inescapable reminder of the
actual difficulty and quality of the project they are working on, and make it
less likely that the product will be released in ignorance of the facts about its
state. Based on previous research [8] we propose that in order to inculcate such
a discipline research experiments are required towards a practical
implementation of a Personal Spreadsheet Process.

References
1. Financial Modelling of Project Financing Transactions, Robert J

Lawrence, Institute of Actuaries of Australia Financial Services Forum
http://www.actuaries.asn.au/IAA/upload/public/fsfpaper2004-jasminandlee.pdf

2. Unskilled and Unaware of It: How Difficulties in Recognizing One's
Own Incompetence Lead to Inflated Self-Assessments, Justin Kruger
and David Dunning, Journal of Personality and Social Psychology
1999, Vol. 77, No. 6, 1121-1134

3. Human Error, James Reason, CUP 1990.
4. Recommended Practices for Spreadsheet Testing, Raymond R. Panko,

EuSpRIG 2006 Proceedings
5. A Software Development Methodology for Research and Prototyping in

Financial Markets, A. Kumiega & B. VanVliet, Eusprig 2006
Proceedings

6. Introduction to the Personal Software Process, Watts S. Humphrey,
1996

7. A Discipline for Software Engineering, Watts S. Humphrey, 1995

7

8. Personal Software Process: Does the PSP Deliver its promise?, P.
O'Beirne and J. Sanders, Proceedings of Inspire ‘97, 1997

9. Quoted in New Directions for Software Metrics, Norman Fenton, CIO
Symposium on Software Best Practices, September 2006,
http://www.agena.co.uk/newsletters/NS4Articles/2514/New_Directions
_For_Software_Metrics.pdf

10. Applied Software Measurement: Assuring Productivity and Quality,
Capers Jones, 1996

11. Metrics and Models in Software Quality Engineering, Stephen H. Kan.
12. Spreadsheet Check and Control: 47 techniques to detect and prevent

errors, Patrick O'Beirne, Systems Publishing, 2005

